1	$eg \sqrt{\frac{36}{25}} \left(=\frac{6}{5}\right) \text{ or } \sqrt{\frac{25}{36}} \left(=\frac{5}{6}\right) \text{ or } \sqrt{\frac{36}{25}} \left(=\frac{5}{6}\right) \text{ or } \sqrt{\frac{36}{5} \cdot \sqrt{25}} \left(\frac{5}{5}\right) \text{ or } \sqrt{\frac{25}{36} \cdot \sqrt{36}} \left(\frac{5}{5}\right) \text{ or } \sqrt{\frac{5}{25} \cdot \sqrt{36}} \left(\frac{5}{5}\right) \text{ or } \sqrt{\frac{5}{25} \cdot \sqrt{36}} = \left(\frac{125}{216}\right) \text{ oe } \text{ or } \frac{\frac{36^3}{25^3}}{\frac{25^3}{300^2}} = \frac{(\text{vol of large})^2}{300^2} \text{ or } \frac{36}{25} = \frac{(\text{vol of large})^2}{300^2} \text{ oe } \frac{36}{300^2} \text{ or } \frac{36}{30^2} \text{ or } \frac{36}{3$		3	M1	for a correct scale factor for length – may be given as a fraction or ratio or a correct scale factor for volume given as a fraction or ratio or a correct equation for the volume of each large block
	eg $300 \times \left(\frac{6}{5} \right)^3$ or $300 \div \left(\frac{5}{6} \right)^3$ oe or $\sqrt{\frac{300^2 \times 36^3}{25^3}}$ or $\left(\frac{36 \times 300^{\frac{2}{3}}}{25} \right)^{\frac{3}{2}}$ oe			M1	for a complete method to find the volume of a large block
	Working not required, so correct answer scores full marks (unless from obvious incorrect working)	518.4		Al	allow 518 Total 3 marks

2	$\sqrt[3]{\frac{4352}{1836}} \text{ or } \frac{4}{3} \text{ or } 1.33(33) \text{ or } 4:3$ or $\sqrt[3]{\frac{1836}{4352}} \text{ or } \frac{3}{4} \text{ or } 0.75 \text{ or } 3:4$		3	M1	for a correct length scale factor or a correct length ratio
	e.g. 1120 ÷ $\left(\left\ \frac{4}{3}\right\ \right)^2$ oe or 1120 × $\left(\left\ \frac{3}{4}\right\ \right)^2$ oe			M1	(dep on M1) for a correct method to work out the surface area of A
		630		A1	
					Total 3 marks

3	(Length sf =) $\sqrt[3]{0.8} (= 0.928)$ or $\sqrt[3]{1.25} (= 1.07)$		4	M1	for a correct linear scale factor
	or $\sqrt[3]{4}:\sqrt[3]{5}$ oe				
	(Area sf =) $\left(\sqrt[3]{0.8}\right)^2$ (= 0.861) or 86.1(%)			M1	for a correct area scale factor
	or $(\sqrt[3]{1.25})^2$ (=1.16) or 116(%) or $(\sqrt[3]{4})^2$: $(\sqrt[3]{5})^2$				
	oe				
	eg (k =) (1-"0.861")×100 or (100 - "86.1")			M1	for a method to find the percentage
	or $100 - \frac{100}{"1.16"}$ or $100 - \frac{100}{"116"} \times 100$				reduction
	or $100 - 100 \times \frac{(\sqrt[3]{4})^2}{(\sqrt[3]{5})^2}$				
		12.0		A 1	appart 12.7 12.0
		13.8		A1	accept 13.7 – 13.9
					Total 4 marks

4	$\sqrt{4}$: $\sqrt{9}$ (= 2:3) or $\frac{\sqrt{4}}{\sqrt{9}} \left(=\frac{2}{3}\right)$ oe or		4	M1 for finding the ratio or fraction for lengths for $A : B$ or $B : A$
	$\sqrt{9}: \sqrt{4} (=3:2) \text{ or } \frac{\sqrt{9}}{\sqrt{4}} (=\frac{3}{2}) \text{ oe}$			
	$\sqrt[3]{125}$: $\sqrt[3]{343}$ (= 5 : 7) or $\frac{\sqrt[3]{125}}{\sqrt[3]{343}}$ (= $\frac{5}{7}$) oe or			M1 for finding the ratio or fraction for lengths for $B : C$ or $C : B$
	$\sqrt[3]{343}$: $\sqrt[3]{125}$ (= 7:5) or $\frac{\sqrt[3]{343}}{\sqrt[3]{125}}$ (= $\frac{7}{5}$) oe			
	<i>A</i> : <i>B</i> = 10 : 15 and <i>B</i> : <i>C</i> = 15 : 21 oe			M1 for mainpulating $A : B$ and $B : C$ so that both B values are equal
		10 : 21		A1 Allow 1 : 2.1 SC3 for 21 : 10 with all working shown
				Total 4 marks

5	eg 2 ³ : 3 ³ or 8: 27 or 10 ³ : 15 ³ oe or $\left(\frac{15}{10}\right)^3$ or 1.5 ³ (=3.375) or $\left(\frac{3}{2}\right)^3 \left(=\frac{27}{8}\right)$ or $\left(\frac{10}{15}\right)^3$ or $\left(\frac{2}{3}\right)^3 \left(=\frac{8}{27}\right)$		4	M1	for a cor	rect rati	io or scale factor for the volumes
	$eg \frac{1197}{27-8} \text{ or } \frac{1197}{15^3-10^3}$ or $\frac{27}{8}V_A - V_A = 1197 \text{ oe or } \frac{19}{8}V_A = 1197 \text{ oe}$		-	M1	volume	or for s	thod to find the value of 1 share of etting up a correct equation using for the volumes
	eg 8× $\frac{1197}{27-8}$ or $10^3 \times \frac{1197}{15^3-10^3}$ or $\frac{8}{19} \times 1197$ oe		-	M1	complet	e correc	t method to find volume of vase A
		504		A1	- 		Total 4 marks
	· · ·						
6 (a)	$\frac{12}{4} (=3) \text{ or } \frac{4}{12} (=0.3) \text{ or } \frac{BC}{4} = \frac{16.5}{12}$ or $BC \div 16.5 = 4 \div 12$ or $(BC =)16.5 \div \frac{12}{4}$ oe				2	M1	correct scale factor (given as 3 or a fraction or a ratio) or correct equation using <i>BC</i> or a correct expression for <i>BC</i> (award for SF even if not used)
			5.5			Al	
7	$\sqrt{\frac{3600}{625}} \text{ or } \frac{12}{5} \text{ oe or } 2.4 \text{ or } 12:5 \text{ oe}$ or $\sqrt{\frac{625}{3600}} \text{ or } \frac{5}{12} \text{ oe or } 0.416 \text{ or } 5:12 \text{ oe}$ or $\frac{3600^3}{625^3} = \frac{(\text{vol of statue})^2}{750^2} \text{ oe}$				3	M1	for a correct length scale factor or a correct length ratio or setting up a correct equation involving the volume of the statue
	or $\frac{3600}{625} = \frac{(\text{vol of statue})^{\frac{3}{5}}}{750^{\frac{2}{3}}}$ oe					M1	(dep on M1) for a correct method
	eg 750 × $\left(\left\ \frac{12}{5}\right\ \right)^3$ oe or 750 ÷ $\left(\left\ \frac{5}{12}\right\ \right)^3$ oe or $\sqrt{\frac{3600^3 \times 750^2}{625^3}}$ oe or $\left(\frac{3600 \times 750^2}{625}\right)^{\frac{3}{2}}$ oe						to work out the volume of the statue
•	Correct answer scores full marks (unless from obviou	5	10	368		A1	cao
	incorrect working)						Total 3 marks
-	$\exp \sqrt{\frac{25}{64}} \left(= \frac{5}{8} = 0.625 \right) \text{ or } \sqrt{\frac{64}{25}} \left(= \frac{8}{5} = 1.6 \right) \text{ or } \sqrt{25} : \sqrt{64} (5:8) \text{ or } \sqrt{64} : \sqrt{25} (8:5) \text{ or } \sqrt{(\sqrt{25})^3} = \left(\frac{125}{512} = 0.244140625\right) \text{ oe } \text{ or } \frac{512}{125} = 4.096$ $\frac{25^3}{(\sqrt{64})^3} = \frac{(\text{volof } \mathbf{B})^2}{(\text{volof } \mathbf{B} + 541.8)^2} \text{ or } \frac{25}{64} = \frac{(\text{volof } \mathbf{B})^{\frac{2}{3}}}{(\text{volof } \mathbf{B} + 541.8)^{\frac{2}{3}}} \text{ oe }$				4 M1	be giv or a corr fractio or	correct scale factor for length – may yen as a fraction or decimal or ratio rect scale factor for volume given as a on or decimal or ratio rect equation for the volume of vase B
					M1	For a	correct equation for the volume of B
Q	eg $\mathbf{B}\left(\frac{512}{125}-1\right) = 541.8$ or $3.096\mathbf{B} = 541.8$ oe or eg $\mathbf{A}\left(1-\frac{125}{512}\right) = 541.8$ or $\frac{387}{512}\mathbf{A} = 541.8$ $(8^3)k - (5^3)k(=387k) = 541.8$ or eg $(k=)\frac{541.8}{387}\left(=\frac{7}{5}\right)$						orrect equation for the volume of \mathbf{A}
	eg (B) 541.8 ÷ " $\frac{387}{125}$ " or 541.8 ÷ "3.096" or eg 125×" $\frac{7}{5}$ " or			+	M1		completely correct method to find the ne of vase ${\bf B}$ or vase ${\bf A}$
	(A) 541.8 ÷ " $\frac{387}{510}$ "(= 716.8) oe						
((A) $541.8 \div "\frac{387}{512}"(=716.8)$ oe Correct answer scores full marks (unless from obvious incomvorking)	rrect	175		A1	cao	